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Abstract

Numerous data demonstrate that distracting emotional stimuli cause behavioral slowing (i.e.

emotional conflict) and that behavior dynamically adapts to such distractors. However, the

cognitive and neural mechanisms that mediate these behavioral findings are poorly under-

stood. Several theoretical models have been developed that attempt to explain these phe-

nomena, but these models have not been directly tested on human behavior nor compared.

A potential tool to overcome this limitation is Hidden Markov Modeling (HMM), which is a

computational approach to modeling indirectly observed systems. Here, we administered

an emotional Stroop task to a sample of healthy adolescent girls (N = 24) during fMRI and

used HMM to implement theoretical behavioral models. We then compared the model fits

and tested for neural representations of the hidden states of the most supported model. We

found that a modified variant of the model posited by Mathews et al. (1998) was most con-

cordant with observed behavior and that brain activity was related to the model-based hid-

den states. Particularly, while the valences of the stimuli themselves were encoded primarily

in the ventral visual cortex, the model-based detection of threatening targets was associated

with increased activity in the bilateral anterior insula, while task effort (i.e. adaptation) was

associated with reduction in the activity of these areas. These findings suggest that emo-

tional target detection and adaptation are accomplished partly through increases and

decreases, respectively, in the perceived immediate relevance of threatening cues and also

demonstrate the efficacy of using HMM to apply theoretical models to human behavior.

Introduction

Emotions are an important mechanism facilitating behavioral responses to salient and goal-

related environmental cues [1], and the ability to regulate one’s emotions is an important

determinant of health and well-being [2]. Emotions are multisystem phenomenon and
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regulation may be imposed at multiple points, including situation selection, attentional con-

trol, and response manipulation [3]. Tasks probing the automatic attentional control over

salient stimuli (i.e. “implicit emotion regulation”), have been particularly successful probes for

elucidating psychological and neurobiological aspects of emotion regulation [4, 5] and in char-

acterizing abnormalities in the processes in patients with mood and anxiety disorders [6, 7].

However, while decades of research has shown that emotional stimuli alter behavioral

responses, the exact mechanisms mediating the detection and regulation of conflicting or dis-

tracting emotional stimuli have not been clearly established. Delineating these mechanisms

would have clear implications for understanding affective disorders characterized by deficits

in emotion regulation ability. Towards this goal, we present here a novel empirical analysis of

existing theoretical models of implicit emotion regulation.

Gross changes in emotion regulation strategy and aptitude take place over the course of

development [8]. This is thought to be partially driven by imbalances in the developmental

latency of subcortical brain regions compared to cortical regions, such that during adolescence

subcortical brain regions are more fully developed and more sensitive to salient environmental

cues, such as peer evaluations, and dominate behavior in the absence of mature cortical regula-

tory networks [9]. Also, adolescents are at a high risk for trauma exposure [10–12] and the

development of mood and anxiety disorders [13, 14], both of which are related to abnormali-

ties of emotion regulation [15, 16], making adolescence a critical period in which to study

emotion regulation.

Emotional conflict processing tasks have drawn heavily from earlier studies of attentional

control over nonemotional or “cognitive” distractors, which reliably demonstrated that nam-

ing ink color is slowed in the presence of a conflicting and task-incongruent color name [17,

18]. In order to provide a hypothetical model of the cognitive interference effect, Cohen et al.

[19] postulated a framework that hypothesized the existence of a parallel distributed processing

system (hereafter referred to as the “Cohen model”) (Fig 1A). According to this model, both

pieces of information are simultaneously processed by distinct processing units, and the extent

of interference is related to the automaticity and processing speed of each unit, which is modu-

lated by conscious attentional control. Using simulations, it was demonstrated that the Cohen

et al. model of parallel distributed processing accounts for the key findings related to cognitive

interference tasks [19, 20].

Similarly, Mathews and Mackintosh [21] presented a related hypothetical model to explain

findings specific to conflict tasks using emotional distractors (hereafter referred to as the

“Mathews model”) (Fig 1B). Not directly influenced by the Cohen model, Mathews and Mack-

intosh posited a model based primarily on findings from implicit emotion identification and

regulation tasks [21–23]. This model posits that attending to task relevant and irrelevant emo-

tional stimuli is mediated by distinct processes and that anxiety specifically impairs the ability

to ignore irrelevant threat-related information. It bears similarity to the Cohen model in that it

is a parallel processing framework with separate processing nodes for the target and distractor

stimuli. However, while the Cohen model specifies that attentional control alters processing of

both the target and distractor stimuli, attentional control in the Mathews model only affects

the processing of the target stimulus. Processing of the emotional distractor stimulus is modu-

lated by a distinct system—the Threat Evaluation System (TES). This accurately models the

sensitivity of attention to threatening stimuli, especially among anxious participants, who pre-

sumably have greater TES function, although simulations were not employed to test this

model.

One shortcoming of both of these models is their inability to explain well-established

dynamic changes in behavior that occur from trial to trial: namely, conflict adaptation or the

“Gratton effect” [24, 25], and the “slow component” of cognitive [26] and emotional [27, 28]
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interference. The Gratton effect refers to the finding that the degree to which a conflicting dis-

tractor stimuli impairs performance is dependent on whether conflict was present in the previ-

ous trial (i.e. individuals adapt to the difficulty of the task). The slow interference component

refers to the fact that block and event-related task designs produce different levels of perfor-

mance bias, such that blocked presentations of emotional stimuli produce greater interference

effects than a single emotional stimulus presentation. However, the Cohen model and Math-

ews model do not account for these dynamic effects without some modification to include

between-trial dependencies. Botvinick et al. [29] applied these modifications to the Cohen

model (hereafter referred to as the “modified Cohen model”) (Fig 1C) and found, using simu-

lations, that the modified Cohen model was concordant with the Gratton effect and slow cog-

nitive component. However, the authors did not test specifically for models that address the

slow emotional interference effect. A recent study provides a more elaborate model shown via

simulations to account for the slow emotional interference effect, as well as dynamic changes

in cognitive control during implicit emotion regulation (hereafter referred to as the “Wyble

model”) (Fig 1E) [30]. The Wyble model expands upon the previous models of parallel pro-

cessing and incorporates features allowing for interaction between emotional and cognitive

processes.

Neuroimaging has also proven to be a valuable tool in characterizing cognitive and emo-

tional processes. Studies of the neural correlates of cognitive conflict processing have found

that the dorsal anterior cingulate cortex (dACC) detects stimulus conflict and triggers the

recruitment of the dorsolateral prefrontal cortex (dlPFC), which then enables cognitive control

through the amplification of the neural response to the task-relevant feature [4, 31–33]. Botvi-

nick et al. [29] demonstrated that activity of a conflict monitoring node implemented in the

Cohen model of cognitive control parallel findings of dACC activity. Additionally, Wyble et al.

[30] found that their model was consistent with dACC-induced activation of the dlPFC on the

subsequent trial.

With respect to implicit emotion regulation, overlapping yet distinct neural systems are

involved. The dACC is also responsive to emotional conflict, but adaptation occurs through

inhibition of the amygdala by the pregenual ACC/ventromedial PFC (pgACC) [4, 5]. In addi-

tion, the ACC is highly interconnected with the anterior insular cortex forming the hubs of the

“salience” network, which is thought be related to arousal and alertness [34, 35]. The anterior

insula itself is activated by a broad array of tasks and is thought to be generally related to aware-

ness [36]. However, none of the prior modeling studies have tested for concordance between

model predicted implicit emotion regulation performance and neuroimaging findings.

Despite the insight into cognitive and emotional processes that these models have allowed

and their success in reproducing human behavior, the models have only been indirectly tested

on actual human data. That is, simulations have been done to test the ability of the models to

recreate human behavior, but the models have not been directly fit to human data to test the

degree to which the models explain observed human data. Similarly, neuroimaging studies

have demonstrated that particular nodes (e.g., dACC, lateral PFC) are implicated in cognitive

processes specified in the models (e.g., conflict detection, emotion regulation), but these stud-

ies only indirectly test the models through use of static contrast analyses instead of actually

testing the neural correlates of the latent constructs specified in the models and derived

through fitting the model to observed behavioral data. Thus, our theoretical models of how

Fig 1. Schematic depiction of the 5 models implemented. The Cohen et al. (1990) and Mathews et al. (1998) models do not contain between-trial relationships

(Fig 1A and 1B). The remaining model do, as depicted by the relationships between trial n-1 and trial n. (N = neutral, T = threat-related, F = face stimulus,

S = scene stimulus, Cog = cognitive control, Neg = Negative emotion).

https://doi.org/10.1371/journal.pone.0192318.g001
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emotional conflict is detected and resolved have only been weakly tested in regards to both

behavioral and neuroimaging data.

One potential approach to directly testing these theoretical models and identifying the cog-

nitive and neural mechanisms mediating emotional conflict detection and resolution comes

from the field of computational modeling. Computational models have been shown to explain

reinforcement learning behavior [37] and an adaptation of the Rescorla-Wagner model to

emotion regulation was recently proposed [38]. Another form of computational model, which

is a nodal and probability-based model, is the hidden Markov model (HMM). HMM’s are a

class of dynamic bayesian network and are a flexible analytical approach to implementing tem-

poral models of indirectly observed “hidden” states, such as the stimulus processors or the

threat evaluation system posited in the models described above. HMM’s represent models as a

system of discrete nodes connected by conditional probabilities. They have been used exten-

sively in the construction of algorithms for speech recognition [39, 40] and more recently to

integrate fMRI activity with measures of cognitive performance in order to obtain more accu-

rate assessments of hidden cognitive states [41–43], as well as to directly compare theoretical

models of cognitive processing using EEG data [44].

Here, as part of a larger study of the effects of assault victimization on development and

psychopathology, we recruited a cohort of healthy control adolescent girls and administered a

variant of the emotional Stroop task. We then use Hidden Markov Modeling to test the fit of

the above models of cognitive and emotional control to behavior on the task. The models are

then compared in their fits to the data and the best fitting model is used in an exploratory anal-

ysis of the neural correlates of the model. We hypothesize that the model-based subprocesses

of emotional conflict processing will be associated with similar neural mechanisms as the con-

trast-based measures of neural activity (dlPFC, pgACC, dACC, and anterior insula). However,

using this modeling-based approach to delineate the subprocesses of emotional conflict pro-

cessing allows a greater degree of functional separation in the involvement of the implicated

brain regions. While the posited models differ in their description of the behavioral phenom-

ena, we hypothesize that activity of the dACC and anterior insula will be related to stimulus

processing while activity in the dlPFC and pgACC will be associated with attentional control.

Methods

2.1 Participant recruitment and screening

The study was conducted in accordance with the Declaration of Helsinki and approved by the

University of Arkansas for Medical Sciences Institutional Review Board. As part of larger

study of the effect of trauma exposure on emotion regulation, 32 non-traumatized adolescent

girls, 12–16 years of age, were recruited from the local area via newspaper advertisements and

flyers. After the nature of the study had been fully explained to the participant and the partici-

pant’s parent or legal guardian and they both agreed to participation, written informed con-

sent was obtained from the parent/legal guardian and written assent was obtained from the

participant.

In addition to screening for trauma exposure with the trauma assessment portion of the

National Survey of Adolescents [13, 14], participants were also screened for current symptoms

of mental illness, given that mental illness is associated with abnormalities in the neural and

behavioral processing of emotional stimuli [6, 7, 15]. This was done using either the K-SADS

[45] (n = 21) or the Mini International Neuropsychiatric Interview (MINI) (n = 11).

Of the 32 non-traumatized adolescents assessed 2 had current diagnoses mental illnesses, 5

had excessive head-motion during the fMRI scan, and 1 was scanned with incorrect imaging
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parameters. All remaining subjects performed the task adequately (>75% accuracy). There-

fore, all subsequent analyses were conducted on a final sample of 24 healthy adolescent girls.

2.2 Implicit emotion regulation task

Participants underwent fMRI while being administered a variant of the emotional Stroop task.

In this task participants were simultaneously presented with two images, one superimposed

upon the other. The background image depicted a nature scene, either threat-related (e.g.

snake or spider) or neutral (e.g. foliage or rocks), while the superimposed foreground image

was of a person’s face making either a threat-related or neutral expression. The valences of the

two images were factorially manipulated (threatening/neutral background x threatening/neu-

tral face) and uncorrelated. The participants were instructed either to attend to the scene or to

the face and make a button press to indicate whether that stimulus (the ‘target’ stimulus) was

threat-related or neutral. Responses were made using the first two buttons of the Current

Designs 4 Button Curved (HHSC-1x4-CR). Neurobehavioral Systems Presentation software

was used for stimulus presentation and timing recording.

The task was administered using a mixed block- event-related design in which each run

was comprised of two blocks, one block in which the participant was instructed to attend to

the face and the other to the scene. Within the blocks an event-related design was used with a

jittered interstimulus interval of 3–7 seconds. The sequence of trial types (feature valences)

was psuedo-randomized and identical across participants. In order to reduce contributions of

lower-level priming effects, stimulus features were not repeated on successive trials. Three

runs of 64 trials each (192 total trials) were administered with each run lasting approximately 8

minutes.

2.3 Task validation

In order to test the validity of our task as a probe of implicit emotion regulation we performed

standard contrast-based analyses of task performance. Each subject’s reaction time bias was

calculated by taking the difference between the median reaction times of the task conditions

comprising the contrast, using only trials in which the participant responded correctly. Then,

a robust one-tailed t-test was used to test for consistent effects of the task manipulation across

the group. Specifically, we tested for: a main effect of conflict, a specific effect of conflict with a

threatening stimulus as the distractor, a specific effect of conflict with a threatening stimulus as

the target, an effect of adaptation to conflict, and the effect of non-conflict threat-related sti-

muli on subsequent responses to non-conflict neutral stimuli (slow emotional interference).

2.4 fMRI image aquisition and preprocessing

A Philips 3T Achieva X-series MRI system with an 8-channel head coil (Philips Healthcare,

USA) was used to acquire imaging data. Anatomic images were acquired with an MPRAGE

sequence (matrix = 192x192, 160 sagittal slices, TR/TE/FA = 7.5/3.7/9˚, final resolution =

1x1x1mm3 resolution). Echo planar imaging sequences were used to collect the functional

images using the following sequence parameters: TR/TE/FA = 2000ms/30ms/90˚, FOV =

240x240mm, matrix = 80x80, 37 oblique slices (parallel to AC-PC plane to minimize OFC

sinal artifact), slice thickness = 3 mm, final resolution 3x3x3 mm3.

Prior to analysis, standard image preprocessing was performed with AFNI [46]. The follow-

ing preprocessing steps were applied in a specified order: despiking, slice timing correction,

deobliquing, motion correction using rigid body alignment, alignment to participant’s nor-

malized anatomical images. The MNI template at 3mm resolution was used for subject core-

gistration. Fluctuations in white matter voxels and CSF were then regressed out of the time
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courses from grey matter voxels to correct for non-neuronal artifacts. This image segmenta-

tion used restricted maximum likelihood to account for autocorrelation following segmenta-

tion [47]. Next, images were spatially smoothed with a 5.0 mm FWHM Gaussian kernel and

scaled to percent signal change. Finally, to further correct for residual motion artifacts that

standard motion correction does not remove, independent component analyses (ICA) were

performed separately on each run of each participant to identify and remove artifact compo-

nents [48–50].

2.5 Model implementation

A Hidden Markov Model is comprised of nodes and the conditional probabilities connecting the

nodes. Although the above simulation studies [19, 29, 30] used activation simulations in which

nodes could take on a range of continuous values, the models described can be tested using a

binary classification of the hidden nodes (e.g. the threat evaluation system of the Mathews et al.

model is either enhanced or inhibited on any given trial). Modeling the nodes in this way reduces

the complexity of the models, and future studies can investigate the advantage gained by using

continuous hidden nodes, which necessitates the use more complex modeling techniques, such as

Kalman filtering. Nodes are linked to one another via conditional probability tables (CPT’s).

These CPTs describe the interdependencies between nodes probabilistically. For example, con-

sider a simple system of two connected binary nodes, A and B, in which B is dependent on A. The

CPT describing their relationship is expressed as a 2x2 table with the entries in each row summing

to 1. The first row describes the probability of B being either 0 or 1, given that A is 0, and the sec-

ond row describes the probability that B is 0 or 1, given that A is 1. Each CPT requires x�(y-1)

parameters to describe, where x is the number of rows (the number of states A may take on) and

y is the number of columns (the number of states B may take on).

The models were implemented as depicted in Fig 1. The observed nodes (the stimuli and

the responses) are marked by solid boxes, while the hidden nodes are marked by dashed boxes.

All nodes, save the response node, were modeled as binary (enhanced/suppressed) values. In

order to discretize the reaction times to make them amenable for use in the HMM’s, for each

individual a median split was applied to their correct reaction times, such that all correct

responses faster than their median correct reaction time were discretized to a single value

‘fast’, while all correct response times slower were discretized to ‘slow’. This discretization sac-

rifices power for reductions in model complexity while retaining a linear interpretation of

reaction time. Incorrect and missing responses were discretized to a single value, ‘error’.

Therefore, on any given trial 3 responses were possible: fast, slow, or error. These 3 values

allow for the detection of task effects on response rates, while introducing the least amount of

complexity. Future studies could test whether the finer-grained or continuous characterization

of participant responses aids in model performance. Model implementation and parameter fit-

ting was performed using the Bayes Net Toolbox for Matlab [51].

2.5.1 Cohen model implementation. The Cohen model (Fig 1A) is a general model of

parallel stimulus processing not specific to emotional conflict [19]. According to this model

there are 3 hidden nodes that link the stimuli and instructions to the response. Two of the

nodes act as detectors of the stimulus features, in which the processors are dedicated to their

specific feature, regardless of whether that feature is the target or the distractor. In the emo-

tional Stroop task used here, the features comprising the stimuli are a threat-related or neutral

facial expression and a threatening or neutral nature scene. According to the Cohen model,

there exists a detector (“detector 1”) for the valence of the facial expression (“feature 1”), and a

detector (“detector 2”) for the valence of the scene (“feature 2”). These detectors are biased

toward the detection of their respective feature by the “attention” node, which sensitizes the
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appropriate detector based on the current task demands (i.e. what the participant has been

instructed to attend to). The detectors then interact to produce the observed response.

2.5.2 Modified Cohen model implementation. As described above, one limitation of the

Cohen model is that it does not capture dynamic temporal effects across trials (the Gratton

effect and the slow component of interference). To account for these effects, Botnivick et al.

applied a conflict monitoring feedback node which connects competition between response

tendencies to the task demand node of the subsequent trial [29]. Here, we apply this same

modification and test it separately from the standard Cohen model (Fig 1B).

2.5.3 Mathews model implementation. The model of implicit emotion regulation

described by Mathews et al. (Fig 1C) hypothesizes the existence of 4 hidden nodes that act as

intermediates between the features of the stimulus presented and the response observed [21].

These nodes are the “target detector”, “distractor detector”, “task effort”, and “threat evaluation”

nodes. The target detector and distractor detector are analogous to the detector of the Cohen

model, except in this model instead of being specific to one of the stimulus features they are spe-

cific to whatever is the target or distractor on the current trial. Therefore, this model distin-

guishes between the detection of threat based on whether the participant intends (the target) or

does not intend (the distractor) to detect it. The task effort node alters the target detector’s

response to the target feature of the stimulus, such that high task effort causes the target detector

to be more sensitive to the valence of the target, regardless of whether the target is threat-related

or neutral. The threat evaluation node alters the response of the distractor detector to the dis-

tractor. High threat evaluation causes the distractor detector to be more likely to detect a threat-

related distractor. The target detector and distractor detector then interact, producing a final

stimulus representation that governs the response. Mathews et al. also posited that the target

detector and distractor detector interact with one another to produce a final stimulus represen-

tation [21]. However, this interaction is not tenable under an HMM framework because it intro-

duces a cycle between two hidden states leading to an unstable model. Therefore, we modeled

this interaction as occurring at the level of response generation, which still allows these two

nodes to interact but does not introduce a cycle into the model.

2.5.4 Modified Mathews model implementation. In order to model the Gratton effect

and the slow component of emotional and cognitive interference, we separately tested a model

in which we applied a modification similar to the one applied by Botvinick et al.[29]. This

modification allowed the target detector and distractor detector from the previous trial to

influence the task effort and threat evaluation of the current trial (Fig 1D). This modification

enables the presence of dynamic changes in cognitive and emotional control that are not pres-

ent in the Mathews model.

2.5.5 Wyble model implementation. The model of implicit emotion regulation posited

by Wyble et al. (Fig 1E) is the most complex of the three models, requiring 7 hidden nodes to

be implemented in the HMM framework [30]. Similar to the Cohen model, the Wyble model

also has feature specific detectors which are biased by a task demand node. However, the

detectors, rather than directly converging on the response layer, converge on an intermediate

“categorical” layer, which is also biased by task demand toward processing of the task relevant

feature. Output from the categorical layer then produces the response tendencies. If these

response tendencies conflict, this conflict triggers cognitive control on the next trial, via ampli-

fication of the task demand node. Additionally, to explain the slow emotional interference

effect, the detection of negative information for the detectors causes reductions in the recruit-

ment of cognitive control. Because we observe responses subsequent to the resolution of con-

flicting response tendencies, in order to implement this model using the HMM framework we

introduced a conflict node which represents the presence of conflict at the categorical level,

rather than the response level.
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2.6 Model fitting

To find the set of parameters that provided the best fit of the data to a given model, we applied

the Baum-Welch algorithm [52], which is an iterative expectation maximization procedure.

The Baum-Welch algorithm starts with an initial set of parameter estimates and makes itera-

tive adjustments to them, maximizing the probability of the observed evidence given the

model (i.e. the negative log-likelihood is maximized) for each iteration, until further adjust-

ment does not result in better fit of the model to the evidence. The evidence supplied for the

model fitting are the stimuli, response, and instruction (if applicable) for each trial. Model fit-

ting was performed on the group-level, in which the models were fit to all 4608 trials (64 trials

x 3 runs x 24 subjects) of the group’s collective data. Performing the model fit on the group

data ensures consistent nodal function across the group and this approach is consistent with

previous studies using HMM’s to estimate cognitive states from neuroimaging data [44].

Given that this procedure is sensitive to the initial parameter estimates, or “priors”, we

solved each model using many different initial priors in order to more fully search the parame-

ter space. After using 3000 different priors it became very unlikely to find a more optimal solu-

tion, so all models were solved using 3000 priors. After the Baum-Welch algorithm had been

performed 3000 times with different priors, the solutions were then ranked by their final nega-

tive log-likelihood in order to find the most optimal solutions.

However, the unobserved nature of hidden nodes allows for symmetries to exist in the

parameter space. Such symmetries occur because a node’s CPTs can be flipped, resulting in an

equivalent solution as measured by the negative log-likelihood. In other words, the algorithm

calculates a node be either 0 or 1, but we wish to impose the interpretation that 0 = “off/sup-

pressed” and 1 = “on/enhanced”, rather than the alternative of 0 = “on/enhanced” and 1 =

“off/suppressed”. Although symmetries aid in the finding of optimal solutions because they

effectively shrink the parameter space, they become problematic when one wishes to interpret

the solution. Therefore, we restricted the possible priors used to initialize the Baum-Welch

algorithm in order to ensure the 0 = off/1 = on interpretation. For example, in the Cohen et al.

model the detection of the scene being either neutral or threat-related should be positively cor-

related with whether the scene was actually neutral or threat-related. According to the negative

log-likelihood, a solution in which these two are negatively correlated explains the data equally

as well, but the solution in which these two are anticorrelated is nonsensical. Therefore, we

only initialized using priors that are within the interpretable portion of the parameter space to

ensure that a hidden state being either 0/1 confers the off/on interpretation. We also verified

after the Baum-Welch procedure that the solution still represented the off/on interpretation

and that the solution did not produce a trivial solution with highly correlated (r> 0.80) hidden

nodes. These constraints were applied to each model and, therefore, do not alter the model

comparisons, however, the constraints bias the final parameter values limiting inferences

regarding particular parameters. For example, the target detector in the Mathews models is

constrained to be positively correlated with the target itself, in order to insure the 0/1, off/on

interpretation. Therefore, these parameters are biased by the constraints and should be subject

to statistical tests of their reliability. However, the parameters governing responses are left

unconstrained so stronger inferences regarding the quality of the model can be drawn when

examining these parameters.

2.7 Model comparison and examination

Given that a more complex model should always provide a superior fit, and that the models

under comparison varied in their complexity, we used four criteria to assess model fit: the

Akaike Information Criterion (AIC) [53], AIC corrected for finite sample size (AICc) [54],
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Hannan-Quinn Information Criterion (HQC) [55], and the Bayesian Information Criterion

(BIC) [56]. These criteria balance the achieved negative log-likelihood of a model with the num-

ber of parameters needed by that model. The criteria differ in how much they penalize addi-

tional parameters; the AIC applies the smallest penalty and the BIC applies the largest. Because

we are selecting only the most optimal fit for each model, there is no variance with which to test

the statistical significance of the superiority of one model over the other. Rather, we are simply

comparing the models relatively using these parameters. However, by using multiple fit criteria

we can obtain a degree of certainty regarding the relative ranking of the models. Additionally,

the AICc can also be used to quantify how much better one model is than another in terms of

how likely the worse model is actually better i.e. the relative likelihood. It is calculated as

Relative likelihood ¼ exp
AICcmin � AICcj

2

� �

ð1Þ

where AICcmin is the AICc of the optimal model and AICci is AICc of the next best model. This

quantity expressed the likelihood that the next best model actually explains the data as well as

the best model. Again, this value does not provide a statistical comparison between the model

fits but provides a quantitative degree of certainty.

Additionally, we performed tests of the interpretability of the final model by testing for pos-

itive correlations between the actual target valence and the detected target valence and also the

actual distractor valence and the detected distractor valence. To do so, for each participant sep-

arately we tested for correlation between these nodes and then used a simple one-tailed t-test

across the group to test whether these correlations were significantly greater than 0. Having

established this basic level of interpretability we referred directly to the conditional probability

tables for further examination of the model.

2.8 Neural correlates of hidden nodes

Having applied the Baum-Welch algorithm to calculate the optimal parameters explaining the

group’s data, we then applied the Viterbi algorithm to each individual’s set of data to obtain

subject specific timecourses of the hidden states. The Viterbi algorithm uses the results of the

Baum-Welch algorithm—the optimal model parameters (i.e. the arrows connecting the model

nodes)—and the observed evidence (the stimulus features and reaction times) to explicitly

solve for the most likely configuration of the hidden states for each trial (i.e. the nodes them-

selves) and the observed evidence (the stimulus features and the responses) [57]. In other

words, the Viterbi algorithm calculates which nodes are inhibited and which are enhanced for

each trial, providing a timecourse of each node’s activity. These timecourses were used as pre-

dictors of BOLD signal in a whole-brain voxelwise amplitude-modulated deconvolution

implemented in AFNI (3dREMLfit). In addition to including the timecourses of the hidden

states, the time course of the task stimuli and the reaction times themselves were also included

to account for variance in brain activity related to the task itself and to improve the specificity

of inferences regarding hidden state-related brain activity. The amplitude-modulated decon-

volution tests whether brain activity of a given voxel is correlated with changes in the ampli-

tude of the predictor. Here, for each trial the amplitude is determined by whether the node is

off /suppressed (equal to 0) to on/enhanced (equal to 1). Thus, we are testing whether a given

voxel encodes a particular hidden state. Following the deconvolution we used a robust one-

tailed t test to test for consistent relationships between hidden state function and neural activ-

ity across the group. We then thresholded results at an uncorrected p< 0.005 and applied a

clustering threshold (k = 23), based on the smoothness of the data using AFNI’s 3dClustSim,

to obtain results significant at a corrected p< 0.05.
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Results

3.1 Task validation

Contrast-based task performance measures demonstrated the task to be a valid measure of

implicit emotion regulation. Conflict, when considering all conflict conditions, regardless of

whether threat was the target or distractor, did not significantly slow response times, although

a trend was present for conflict related slowing (M = 5.0 ms; SE = 13.88; t = 2.04; p = 0.053).

However, examining more specific contrasts reveals that this interference effect was driven by

trials in which the distractor stimulus was threatening vs neutral (M = 65 ms; SE = 14.29;

t = 4.23 p = 0.0003). Whereas conflict trials in which the threatening stimulus was the target

were actually related to faster reaction times (M = -31 ms; SE = 14.29; t = -2.20; p = 0.038).

Comparing conflict trials preceded by a nonconflict trial to those preceded by a conflict trial

(i.e. Gratton effect) revealed significant adaptation to conflict (M = 15 ms; SE = 13.47; t = 2.07;

p = 0.0499). This adaptation effect was strongest following trials in which the distractor was

threat-related (M = 30 ms; SE = 6.53; t = 4.34; p = 0.0002), and was not present following trials

in which the target was threat-related (M = -44 ms; SE = 21.64; t = -1.48; p = 0.152). We also

tested for a slow emotional interference effect by examining whether threat-related stimuli

altered responses on subsequent nonconflict neutral/neutral trials. Responses to neutral/neu-

tral trials that were preceded by nonconflict threat/threat stimuli were significantly faster than

those preceded by neutral/neutral stimuli (M = -38 ms; SE = 16.53; t = -3.45; p = 0.002). Tabu-

lated results can be found in S1 Table. The previous analyses were performed having removed

the incorrect trials. We performed additional analyses removing the incorrect trials and also

trials occurring after an incorrect trial and found only very minimal changes to the results (S2

Table). These results support the validity of this novel task to probe the psychological effects of

interest: emotional conflict, emotional conflict adaptation, and a slow emotional interference

effect.

3.2 Model comparison

According to all four fit criteria, the relative ranking of how well the data fit each model from

best to worst was: Modified Mathews model > Mathews model > Cohen model > Modified

Cohen model >Wyble model (Fig 2). Even according to BIC, which penalizes complexity the

most, the data fit best to the modified Mathews model. Using the relative likelihood to com-

pare the fit of the modified Mathews model to the fit of the next best model, the Mathews

model, revealed that the relative likelihood that the Mathews model actually explains the data

as well as the modified Mathews model (analogous to a p value) was 1.8 x 10−64, which is

extremely significant and driven by the large number of observations (192 trials x 24 partici-

pants = 4608 observations).

When examining the interpretability of the resulting modified Mathews model we found

that the target valence and target detector were positively correlated across the group (t = 32;

p< 0.0001) and the distractor valence and distractor detector valence were also positively cor-

related across the group (t = 2.50; p = 0.01), suggesting interpretability of the model.

When examining the conditional probability tables of the model (S3 Table) we found also

that task effort was more likely to be high following conflicting stimuli (0.68 for threatening

target with neutral distractor and 0.74 for neutral target with threatening distractor) and high

task effort biased the target detector to match the target (when task effort low 0.70 chance to

detect threat when target actually neutral but 0.60 chance when task effort high; and 0.83

chance to accurately detector neutral regardless of task effort). Threat evaluation was likely to

be high following dual threatening stimuli (0.94), and caused the distractor detector to be
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more likely to detect threat (when threat evaluation was high there was a 0.725 chance to accu-

rately detector threatening distractor, when threat evaluation was low 0.463 chance to accu-

rately detector threatening distractor). Also, when participants detected both stimuli to be

neutral or the target to be threatening and the distractor neutral they were most likely to make

a fast response (0.90 and 0.73, respectively), and were most likely to make a slow response

when detecting a neutral target stimulus and a threatening distractor stimulus (0.83). These

findings mirror the contrast-based analyses and suggest validity of the model to accurately cap-

ture implicit emotion regulation processes.

Additionally, to assess the reliability of this solution we tested whether the negative log-like-

lihoods of the other 2999 solutions were related to their difference from the optimal solution

(as measured by the sum of the squared difference between each parameter and the optimal

parameter from the best chosen solution). There was a significant negative relationship (beta =

-0.004; p = 0.002) between negative log-likelihoods and distance from the optimal model

Fig 2. Model fit comparisons. Lesser values indicate better model fit. According to all criteria the modified Mathews et al. (1998) model fit best to the behavioral data.

These values do not provide a statistical comparison between the model fits and has no variance, but they do provide a relative likelihood that one model is not actually

better than the next. According to this value, the likelihood that the modified Mathews model is not actually best is 1.8 x 10−64.

https://doi.org/10.1371/journal.pone.0192318.g002
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indicating large scale stability of the solutions, such that solutions which fit the data better,

according to the negative log-likelihood, were more similar to the optimal solution than solu-

tions which fit the data worse.

3.3 Neural correlates of the modified Mathews model

The following is a description of the neural regions associated with each node of the model. A

multiple regression was used in the deconvolution of the data, so that each effect listed below

is significant when controlling for the other nodes in the model (e.g. the neural correlates of

the Target detector are significant controlling for every other node, including the actual Target

stimulus). Regions of interests are described in the following text and a full elaboration of sig-

nificant clusters is provided in Table 1.

3.3.1 Reaction time. Longer reaction time was positively related to broad areas of activity

in the bilateral anterior insula cortex, the dACC/pre-SMA, and bilateral caudate. It was nega-

tively related to activity in bilateral posterior insula (Fig 3).

3.3.2 Target detector. The model-based detection of a threat-related target stimulus was

associated with increased activity in the bilateral anterior insula and decreased activity in the

left motor cortex (Fig 4).

3.3.3 Distractor detector. The model-based detection of a threat-related stimulus in the

distractor was not related to activity in any nodes in the salience network but only a small clus-

ter of decreased activity in the inferior visual cortex (Fig 5).

3.3.4 Task effort. Model-based high task effort (high compared to low) was associated

with decreases in the nodes comprises the salience network—the dACC and the bilateral ante-

rior insula (Fig 6).

3.3.5 Threat evaluation. Model-based threat evaluation (high compared to low) was asso-

ciated with greater activity in the right anterior insula and the right parietal cortex (Fig 7).

3.3.6 Target stimulus. Threatening target stimuli (compared to neutral target stimuli)

evoked exaggerated processing in the ventral visual cortex and decreases in the medial visual

cortex extending into the parahippocampus. Additionally, threatening targets were associated

with increased activity in a small cluster in the left anterior insula (S1 Fig).

3.3.7 Distractor stimulus. The presence of threat in the distractor stimulus (compared to

neutral) was associated with a similar pattern of activation in the ventral visual and medial cor-

tices, but also associated with deactivation in the posterior and insula (S2 Fig).

3.3.8 Event occurred. The baseline intercept of the regression accounts for neural activity

related to the occurrence of all trials, regardless of type. This baseline of activity contained

both positive and negative areas of activation broadly throughout the entire brain.

Discussion

The study of automatic biases in cognitive and emotional processing has a long history of

using models to formulate and test hypotheses [19, 21, 29, 30]. However, these models have

only been indirectly tested through the use of simulations, which test for modeled behavior

that corresponds with human behavior. Here we sought to use Hidden Markov Modeling to

test previously hypothesized models of implicit emotion regulation on actual human data by

first comparing the models and then testing for neural correlates of the model which provided

the best explanation of the data.

According to all four goodness-of-fit criteria, the model that best fit the data was the modi-

fied Mathews model, and both the modified and the unmodified Mathews models greatly out-

performed the other models. The Mathews models differ from the other models in two

respects. They do not require knowledge as to which stimulus feature is the target and which is
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Table 1. Full description of significant clusters. All clusters reaching statistical significance at a whole brain corrected p< 0.05 (t> = 2.807, cluster threshold 23,

k = 23). Coordinates are based on the MNI templates.

Reaction time Region Peak t- value Size Center of Mass

x y z

dACC/pre-SMA 5.87 597 0 15 49

R superior temporal sulcus -5.74 510 51 -19 19

L superior temporal sulcus -5.36 501 -56 -16 17

R anterior insula 5.34 343 40 17 7

Midbrain 5.75 250 -4 -19 -5

L anterior insula 5.54 208 -37 18 7

R Precentral gyrus -6.08 156 17 -36 66

L posterior MFG 5.31 131 -43 10 38

R Cuneus 5.42 94 3 -79 6

R caudate 4.57 89 10 -3 13

L supramarginal gyrus 4.43 88 -42 -49 48

L postcentral gyrus -5.30 86 -22 -41 65

L posterior SFG 4.81 82 -30 -9 57

R posterior MFG 4.00 55 45 9 35

R posterior MFG 4.56 28 36 23 32

L anterior MFG 4.29 26 -31 48 24

L supramarginal gyrus 4.15 25 -22 -70 47

Target detector Region Peak t- value Size Center of Mass

x y z

R anterior insula 8.65 108 47 14 9

L precentral gyrus -6.20 108 -40 -27 58

L anterior insula 3.97 70 -37 16 6

Midbrain 6.99 68 -1 -22 -8

Posterior cingulate cortex -3.64 27 -6 -52 26

Distractor detector Region Peak t- value Size Center of Mass

x y Z

R inferior cuneus -4.18 26 26 -82 -16

Task effort Region Peak t- value Size Center of Mass

X y z

R anterior insula -6.17 153 39 16 7

dACC -6.54 89 -4 15 33

L anterior insula -6.04 85 -34 17 9

Thalamus -5.57 49 5 -19 1

Midbrain -4.14 25 2 -26 -17

Threat evaluation Region Peak t- value Size Center of Mass

x y z

R supramarginal gyrus 5.81 108 42 -53 43

R anterior insula / white matter 5.56 26 40 19 18

Target stimulus Region Peak t-value Size Center of Mass

X y z

L lingual gyrus -7.02 828 -8 -73 -1

R ventral visual cortex 11.00 804 42 -67 -4

L ventral visual cortex 8.98 574 43 -63 -6

R parahippocampus -5.21 53 22 -41 -6

R lingual gyrus -5.40 46 13 -53 10

(Continued)
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the distractor, and are therefore able to specify an attention-biasing system that is specific to

the distractor stimuli, referred to as the threat evaluation system.

The additional complexity of the Cohen model and Wyble model used to specify which fea-

ture is the target and which is the distractor is likely not necessary in this task; the valence of

the target and distractor is sufficient to capture the relevant features of the stimuli. However,

this framework is likely only applicable to tasks in which both features of the stimuli cause a

similar interference effect. For example, in the classic Stroop task participants demonstrate an

interference effect when naming the ink color, but there is no interference when reading the

word, which is presumably due to the fact that word-read has higher automaticity than color

naming [58]. Applying the Mathews models to the classic Stroop task, therefore, would likely

result in a poor fit because they cannot account for difference in the processing of the two

stimulus features. The Cohen models would likely produce a better fit to data generated using

such a task. In this respect, the Cohen models are possibly more generalizable, because they

can accommodate tasks in which processing of the stimulus features occurs with different

automaticity, but on tasks in which automaticity is comparable, such as the task used here, this

additional complexity is not needed. However, the threat evaluation system of the Mathews

Table 1. (Continued)

L anterior insula / white matter 4.45 25 -27 13 4

L supramarginal gyrus -5.01 24 -17 -67 42

R parietooccipital sulcus 4.39 24 23 -76 38

Distractor stimulus Region Peak t-value Size Center of Mass

x y z

R ventral visual cortex 9.56 1020 39 -67 -3

L ventral visual cortex 8.52 870 -42 -66 -3

Medial visual cortex / lingual gyri -6.28 660 -2 -72 3

R lateral SMA -10.50 135 53 -7 31

L posterior IFG -5.28 87 -58 1 12

R putamen -5.81 59 27 10 6

R precentral gyrus -5.65 53 39 -22 58

L posterior MFG 4.56 47 -39 8 34

R posterior insula -5.39 43 48 -29 15

L supramarginal gyrus 5.37 42 -28 -69 52

R middle insula -4.01 38 39 -7 12

L posterior insula -4.69 35 -30 -15 6

Event occurred Region Peak t- value Size Center of Mass

X y z

Broad positive and negative areas n/a 16582 -5 -30 21

R anterior insula 7.89 568 40 15 22

R supramarginal gyus -7.61 365 49 -61 35

L anterior insula 9.58 286 -38 12 11

L anterior IFG -5.49 232 -49 33 8

R anterior IFG -5.76 93 47 35 3

L posterior insula 4.61 72 -49 -22 22

L putamen 5.73 65 -25 4 4

R pre-SMA 4.49 46 33 -6 60

R hippocampus -4.85 37 23 -17 -18

Corpus callosum (white matter) 5.14 30 -8 -28 27

https://doi.org/10.1371/journal.pone.0192318.t001
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models does appear to add useful complexity to the models. This threat evaluation system

controls attentional bias toward threatening distractor stimuli. The high performance of the

models which included this node suggests that the allocation of attention toward relevant emo-

tional stimuli is independent from the allocation of attention away from distractor stimuli.

The modification to the Mathews et al. model provided even greater performance in

explaining the behavioral data. This modification adds a temporal effect to the model, allowing

detectors of the current trial to inform the task effort and threat evaluation system of the subse-

quent trial. Given the well-established observations of conflict adaptation [24, 25] and slow

interference effects [26–28], which was also observed in our task validation, it is not surprising

that this modification led to better model performance. However, this modification did not

improve the fit of the Cohen model. Combined with the poor indices of fit, this further sug-

gests that the Cohen model provides a poor fit to the observed data from an emotional conflict

task. The Wyble model performed the worst of the five models, which was likely due to the

Fig 3. Neural encoding of reaction time. Results are from a multiple regression amplitude-modulated deconvolution and depict areas where activity scaled significantly

with reaction time. Positive values (orange) indicate that greater activity was associated with longer reaction times. Likewise, negative values (blue) are areas where

activity was inversely related to reaction time.

https://doi.org/10.1371/journal.pone.0192318.g003
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complexity of the model. This complexity allows the model to accommodate any possible con-

flict task and accounts for temporal effects, and while this high degree of complexity does not

hinder the model in simulations, it becomes untenable when all aspects of the complex models

are estimated solely from reaction time data. One potential method to improve the fit of the

models, especially the more complex models, is to use other indirect measures of the hidden

nodes, such as neural activity or skin conductance responses as trial-by-trial indicators of a

particular node’s activity. For example, skin conductance measures from each trial could be

used to obtain more accurate estimates of the negative emotional state in the Wyble model, or

dlPFC neural activity could be used as an indicator of the task effort node in the Mathews

model.

We also observed large scale stability in the fit of the modified Mathews to the data. The

optimal parameters were chosen by ranking the solutions according to their negative log-likeli-

hoods and finding the best solution in which the hidden states were not highly correlated and

Fig 4. Neural encoding of the detection of the target stimulus. Shown are areas that were differentially responsive to the detection of threatening versus neutral target

stimuli, indicating a neural correlate of the distractor detector. Positive values (orange) indicate that a region was activated in response to the detection of a threatening

target and/or deactivated by the detection of a neutral target. Likewise, the negative values (blue) follow the inverse of this relationship.

https://doi.org/10.1371/journal.pone.0192318.g004
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the detectors correlated positively with their stimuli, which ensured the 0/1, off/on, interpreta-

tion. Having determined the optimal solution, we found that the negative log-likelihoods of

the remaining solutions were correlated with the degree to which the solutions differed from

the optimal solution. This suggests that there is high-level structure in the solutions of the

model and that with increasing model fit, the solutions converge toward what we have found

to be the optimal solution. The parameters of this model also confirm and account for previ-

ously observed implicit emotion regulation processes, further indicating the validity of the

found solution. Although most of these parameters are biased by the initialization constraints

used to insure interpretability of the model, the response parameters were not constrained but

they still converged to parameters which are concordant with the contrast based analyses, such

that the largest impairments in reaction times were due to stimuli in which the target was neu-

tral and the distractor was threat-related. This provides further evidence of the ability of the

model to accurately capture implicit emotion regulation processes.

Fig 5. Neural encoding of the detection of the distractor stimulus. Shown is an area that was differentially responsive to the detection of threatening versus neutral

distractor stimuli, indicating a neural correlate of the distractor detector. The negative values (blue) indicate that this region was deactivated in response to the detection

of a threatening target and/or activated by the detection of a neutral target.

https://doi.org/10.1371/journal.pone.0192318.g005
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The test for neural correlates of the optimal solution to the modified Mathews model

revealed that activity in regions previously implicated in implicit emotion regulation were

associated with the hidden nodes of the model. Importantly, these neural correlates of the hid-

den states are significant when controlling for variance attributable to reaction time as well as

the actual valence of the stimuli. Therefore, these effects are not related simply to the presence

of threat or the overt behavioral response to it, but to how that threat is processed according to

the model.

Longer reaction time was associated with large areas of activity in the cingulate and insula,

consistent with previous findings that activity in these areas scales positively with reaction

time, suggesting their role in sustained attention and awareness [59, 60]. The actual presence

of the threat in both the target and the distractor stimuli evoked greater activity in a large por-

tion of the ventral visual cortex, which has been shown to be related to identification of visual

stimuli (‘What’ visual stream) [61, 62]. This suggests that both threatening stimuli, regardless

of their relevance to task demands, garner similar levels of processing towards determining the

Fig 6. Neural encoding of task effort. Shown are areas that were differentially responsive to high task effort versus low task effort, indicating a neural correlate of the

task effort node. Negative values (blue) indicate that a region was deactivated in response to high task effort and/or activated by low task effort.

https://doi.org/10.1371/journal.pone.0192318.g006
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identity of a threatening stimulus. In addition, the threatening target stimuli themselves (i.e.

not the model based detection of threat) were associated with a small cluster of increased activ-

ity in the left anterior insula, suggesting increased awareness to the threat stimuli at a further

upstream stimulus processing level, irrespective of their effects on behavior.

When examining the neural correlates of the modified Mathews model we found that sev-

eral nodes of the model were associated with activity in the anterior insula and dACC. In par-

ticular, the detection of threat, compared to neutral in the target stimulus was associated with

increased activity in the anterior insula bilaterally, while high task effort, which improves the

accuracy of the target detector, was associated in inhibition of activity in these same areas as

well as inhibition of the dACC. Given also that activity in these areas was related to longer

reaction times, this suggests that the threatening target stimuli represented salient environ-

mental cues and that this salience distracted attention away from the task making the motor

response identifying the valence. Additionally, high task effort, which increased the accuracy

Fig 7. Neural encoding of threat evaluation. Shown are areas that were differentially responsive to high threat evaluation versus low threat evaluation, indicating a

neural correlate of the threat evaluation node. Positive values (orange) indicate that a region was activated in response to high threat evaluation and/or deactivated by

low threat evaluation.

https://doi.org/10.1371/journal.pone.0192318.g007

Hidden Markov Modeling of emotion regulation and neural correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0192318 February 28, 2018 20 / 26

https://doi.org/10.1371/journal.pone.0192318.g007
https://doi.org/10.1371/journal.pone.0192318


of the target detector, was associated with reduction in the activity of these areas, suggesting

that identification of the valence of the targets was facilitated by reduction in the perceived

salience of the images. That is, the participants may have abstracted the emotional content of

the images in order to identify the valence without being distracted by it.

With regard to the distractor detector and threat evaluation nodes of the model, the detec-

tion of threatening distractor stimuli was not associated with greater activity in any brain

region of interest. The task was counterbalanced with respect to which stimulus feature, the

face or the scene, was the target so this is not explainable by imbalance in task design or feature

valence. It may suggest that since the distracting stimuli were irrelevant they engendered less

of an emotional response. The present analyses did not investigate neural changes associated

with specific interactions between the target and distractor, e.g. detecting a threatening distrac-

tor when detecting the target as threatening vs. neutral, and future studies could analyze

whether such interactions may better explain neural activity related to the distracting stimuli.

We did find, however, that high threat evaluation was associated with greater activity in a

small region in the right superior anterior insula. The location, size, and laterality of the find-

ing preclude strong interpretation but may suggest that greater detection of threat is associated

with a baseline higher arousal level.

Although previous research strongly implicates the amygdala as an important node in the

emotion processing neurocircuitry, this region was not related to any of the hidden nodes of

the emotion regulation model. This is most likely due to habituation effects in the amygdala,

whereby amygdala responses diminish with repeated exposure to similar threat-related stimuli

[63]. Therefore, the lack of amygdala activity is possibly due to the length of the task. We also

expected to find evidence for a role of the DLPFC and pregenual ACC in the modified Math-

ews model, particularly with the ‘Task effort’ and ‘Threat evaluation’ subprocesses, respec-

tively. However, we did not find evidence that either region was related to the model. This

could indicate that the roles of these regions in this behavioral process are not compatible with

the representation of this behavioral process by the modified Mathews model. This does not

preclude these regions from being involved, but suggests that they are involved with some

other, perhaps higher-order, behavioral processes.

Among this group of developing adolescents we have found evidence that the model of

emotion regulation most supported by human data is the modified Mathews model. These

findings confirm previous evidence that emotion regulation is a dynamic process of continual

adaptation to relevant and irrelevant threatening signals. Additionally, they suggest that the

direction of attention toward goal-relevant threat is independent of the direction of attention

away from a goal-irrelevant threat, but that these two processes drawn upon a common neural

system, the salience network, which acts to balance goal-directed behavior with automatic

responses to biologically-relevant cues.

Being the first study to apply and test previously hypothesized models of implicit emotion

regulation to actual human data using a Hidden Markov modeling framework, the work pre-

sented is not without limitations. The use of a sample of adolescent girls impairs generalizabil-

ity to adults and further studies among healthy adult populations are needed to further

validate the approach described here. However, a recent study of emotional conflict in adoles-

cents age 10–15 found that age correlated with conflict-related activity in the middle frontal

gyri, and not the regions found in the present study [64], suggesting that the regions found

here are not affected by age. Also, this data was acquired as part of a larger study of adolescent

assault exposure and the use of this sample facilitates future study of the neural and cognitive

mechanisms affected by assault exposure and may ultimately contribute to more efficacious

early interventions for adolescent assault victims, which are needed to lessen the burden of

mental illness among assault victims. Additionally, the absence of a baseline nonemotional

Hidden Markov Modeling of emotion regulation and neural correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0192318 February 28, 2018 21 / 26

https://doi.org/10.1371/journal.pone.0192318


task precludes the ability to infer that the findings are strictly due to the emotional content of

the stimuli and the specificity of these findings for emotional versus cognitive processes is a

potential area of future research. The implementation using the HMM framework necessitated

the discretization of the hidden nodes and the response values. More sophisticated techniques

can model nodes continuously, but are more complex and require a greater number of param-

eters to describe the models. Assuming a linear relationship between nodal activity and its

influence on its neighboring nodes, discretizing nodal activity only reduces the power to detect

a relationship and does not affect the magnitude or direction of the relationship. An additional

limitation is that, while we have modeled temporal dynamics between trials, we did not model

within-trial temporal dynamics. Such within-trial temporal effects were used in the simulation

studies testing the models’ ability to simulate human behavior. However, the approach used

here is not conceptually incompatible with temporal within-trial effects and such temporal

models could be constructed and tested, although this would necessitate a higher temporal res-

olution of observations than obtained here. A technique such as magnetoencepahlography

(MEG) could be used to obtain high-temporal resolution measures of nodal activity and pro-

vide causal temporal structure within the response to a single trial (i.e. real-time nodal interac-

tions). Additionally, this framework could potentially offer more elaborate explanations of

developmental and mental-illness related changes in emotion regulation.
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